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Abstract

This research explores the energy of the prime ideal graph of a commutative ring. The study
demonstrates the energy formula of the graph associated with transmission-based matrices.
Through research, the findings highlight the distance, Wiener-Hosoya, and distance signless
Laplacian matrices. It should be noted that the distance and Wiener-Hosoya energies are al-
ways twice their spectral radius, meanwhile, it does not hold for distance signless Laplacian
energy.
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1 Introduction

Ring theory originated in abstract algebra in the early 19th centurywhen commutative and non-
commutative rings were being investigated. In mathematics, rings are fundamental structures
composed of sets with two binary operations, addition, andmultiplication [2]. Graphs from rings
have been interesting to study in the last 30 years. One of these graphs is the prime ideal graph.

There are several graphs whose vertex set is a group or a ring. Anderson et al. [1] wrote a
book about graphs associated with commutative rings. Several results on graphs defined on rings
or groups can be found in several papers. Zai et al. [18] focus on finite commutative rings for
non-zero divisor graphs, meanwhile, the prime graph discussion can be seen in [7]. Apart from
the ring, Romdhini et al. [12] investigated the dihedral groups as the vertex set of commuting and
non-commuting graphs. The association between graph and lattice is presented by Malekpour
and Bazigaran [8]. Romdhini et al. [14] explored the spectral properties of the power graph of
dihedral groups. Rehman et al. [11] also investigated the eigenvalues of the zero-divisor graph
of the ring based on the normalized distance Laplacian matrix. The connection between the zero
divisor and prime graphs was observed in [8]. In 2022, the prime ideal graph definition was first
introduced by Salih and Jund [16] as the following definition.

Definition 1.1. [16] The prime ideal graph is denoted by Γ(R,P )whereR is any commutative ring and P
is its prime ideal. The vertex set is R\{0} and two distinct vertices u and v are adjacent whenever uv ∈ P .

The graph energy concept was first defined by Gutman [3] in 1978. It is defined as the sum
of absolute eigenvalues of a graph. This definition is based on the adjacency matrix of a graph.
This paper devotes the transmission-based matrices of a graph including the Wiener-Hosoya and
distance signless Laplacian matrices. In 2021, Ibrahim et al. [5] pioneered the Wiener-Hosoya
matrix definition of a graph. Later, Pirzada and Haq [9] defined the distance signless Laplacian
matrix of a graph, which involves the distance and transmission matrices. Then, Romdhini et al.
[15] extend this study to formulate the Wiener-Hosoya energy of the non-commuting graph for
dihedral groups. Several distance-based matrices have been applied in [13] which discuss the
degree sum exponent distance energies.

Throughout this work, we correspond Γ(R,P ) with distance, Wiener-Hosoya, and distance
signless Laplacian matrices. The primary goal is spectral radius and energy formulations and
analyzing their relationship.

2 Preliminaries

The basic concepts and definitions are briefly described in this section. Let |R| = n and |P | =
m. There are n− 1 vertices in Γ(R,P ). Let dpq be the distance between vertex vp and vq , and dp be
the degree of vertex vp. The following result presents the degree formula of vp ∈ Γ(R,P ).

Theorem 2.1. [17] The degree of vertex vp in Γ(R,P ) is

dp =

{
n− 2, for every vp ∈ P\{0},
m− 1, for every vp ∈ R\P.

Afterward, the distance between two vertices was explored in [17].
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Theorem 2.2. [17] The distance between two vertices vp and vq in Γ(R,P ) is given by

dpq =

{
1, for every vp ∈ P\{0} and vq ∈ R,

2, for every vp, vq ∈ R\P.

Furthermore, for vp ∈ Γ(R,P ), let τp be the transmission of vp, which is defined as the sum of dpq ,
for all vq ∈ Γ(R,P ) [5].

Definition 2.1. [5] The Wiener-Hosoya (WH) matrix corresponding to Γ(R,P ) is written by
WH (Γ(R,P )) = [whpq] with entries are

whpq =

{
τp
2dp

+
τq
2dq

, if vp ̸= vq and they are adjacent,
0, otherwise.

Definition 2.2. [6] The distance matrix of Γ(R,P ),D(Γ(R,P ), is a square matrix whose entries are dpq
for vp ̸= vq , and zero if vp = vq .

Definition 2.3. [9] The distance signless Laplacian (DSL) matrix of Γ(R,P ) is given by

DSL (Γ(R,P )) = T (Γ(R,P )) +D (Γ(R,P )) ,

where T (Γ(R,P )) = diag (τv1 , τv2 , . . . , τvn).

The spectrum of Γ(R,P ) corresponding to the Wiener-Hosoya matrix can be written as:

SpecWH(Γ(R,P )) =

[
λ1 λ2 . . . λn

k1 k2 . . . kn

]
,

where λ1, λ2, . . . , λn are the eigenvalues of WH(Γ(R,P )) and k1, k2, . . . , kn are their respective
multiplicities. Therefore, the Wiener-Hosoya energy of Γ(R,P ) [3] can be defined as follows:

EWH(Γ(R,P )) = Σn
i=1 |λi| ,

and spectral radius of Γ(R,P ) [4] associated with the adjacency matrix is defined as

ρWH(Γ(R,P )) = max {|λ| : λ ∈ SpecWH(Γ(R,P ))} .

The above notations also apply to the distance and DSL-matrices. Furthermore, we require
the following result to formulate the characteristic polynomial of Γ(R,P ).

Lemma 2.1. [10] If a, b, c, and d are real numbers, then the determinant of the form∣∣∣∣(λ+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1
(λ+ b)In2

− bJn2

∣∣∣∣ ,
of order n1 + n2 can be expressed in the simplified form as

(λ+ a)n1−1(λ+ b)n2−1 ((λ− (n1 − 1)a)(λ− (n2 − 1)b)− n1n2cd) .
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3 Main Results

To construct theWiener-Hosoya and distance signless Laplacianmatrices ofΓ(R,P ), according
to Definition 2.1 and 2.3, we need the vertex transmission of Γ(R,P ).

Theorem 3.1. The transmission of vp in Γ(R,P ) is

τp =

{
n− 2, for every vp ∈ P\{0},
2n−m− 3, for every vp ∈ R\P.

Proof. Let R\{0} = {p1, p2, . . . , pm, r1, r2, . . . , rn−m−1} and P = {p1, p2, . . . , pm}. Based on Theo-
rem 2.2 and the connectivity of Γ(R,P ), then we have two cases. The first case when vp ∈ P\{0}
and vq ∈ P\{0}, the total distances from vertex vp to vq is m − 2, and when vq ∈ R\P , the total
distance is n−m. Hence,

τp = m− 2 + n−m = n− 2.

Meanwhile, for the second casewhen vp ∈ R\P and vq ∈ P\{0}, the total distances between vertex
vp and vq ism− 1, and if vq ∈ R\P , the total is 2(n−m− 1). Therefore,

τp = m− 1 + 2(n−m− 1) = 2n−m− 3.

3.1 Distance energy

In this part, we demonstrate the distance energy of Γ(R,P ).

Theorem 3.2. The characteristic polynomial of D(Γ(R,P )) is

PD(Γ(R,P ))(λ) = (λ+ 2)n−m−2(λ+ 1)m−1
(
λ2 − (2n−m− 5)λ+m(n−m− 1)− 2(n− 2)

)
.

Proof. Let R\{0} = {p1, p2, . . . , pm, r1, r2, . . . , rn−m−1} and P = {p1, p2, . . . , pm}. We have n − 1
vertices for Γ(R,P ). By Definition 2.2 and Theorem 2.2, we obtain the distance matrix of Γ(R,P )
as (n− 1)× (n− 1)matrix as follows:

D(Γ(R,P )) =

p1 p2 . . . pm r1 r2 . . . rn−m−1



p1 0 1 . . . 1 1 1 . . . 1
p2 1 0 . . . 1 1 1 . . . 1
...

...
...

. . .
...

...
...

. . .
...

pm 1 1 . . . 0 1 1 . . . 1
r1 1 1 . . . 1 0 2 . . . 2
r2 1 1 . . . 1 2 0 . . . 2
...

...
...

. . .
...

...
...

. . .
...

rn−m−1 1 1 . . . 1 2 2 . . . 0

. (1)
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Equation (1) can be partitioned into 4 block matrices as follows:

D(Γ(R,P )) =

(
(J − I)m Jm×(n−m−1)

J(n−m−1)×m 2(J − I)n−m−1

)
.

The characteristic polynomial of D(Γ(R,P )) is presented below:

PD(Γ(R,P ))(λ) =

∣∣∣∣ (λ+ 1)Im − Jm −Jm×(n−m−1)

−J(n−m−1)×m (λ+ 2)In−m−1 − 2Jn−m−1

∣∣∣∣ .
By Lemma 2.1 with a = 1, b = 2, c = d = 1, n1 = m, and n2 = n−m− 1, then we get

PD(Γ(R,P ))(λ) = (λ+ 2)n−m−2(λ+ 1)m−1
(
λ2 − (2n−m− 5)λ+m(n−m− 1)− 2(n− 2)

)
.

Theorem 3.3. The spectral radius of Γ(R,P ) associated with the distance matrix is

ρD(Γ(R,P )) =
2n−m− 5 +

√
(2n−m− 5)2 − 4m(n−m− 1) + 8(n− 2)

2
.

Proof. Based on Theorem 3.2, the roots of PD(Γ(R,P ))(λ) = 0 are eigenvalues ofD(Γ(R,P )). There-
fore, we obtain λ1 = −1 with multiplicity m − 1, λ2 = −2 of multiplicity n − m − 2, and

λ3,4 =
2n−m−5±

√
(2n−m−5)2−4m(n−m−1)+8(n−2)

2 . According to this fact, we get the spectrum of
Γ(R,P ) as follows:

SpecD(Γ(R,P )) =

[
λ3 −1 −2 λ4

1 m− 1 n−m− 2 1

]
.

This leads to the spectral radius of Γ(R,P ) as

ρD(Γ(R,P )) =
2n−m− 5 +

√
(2n−m− 5)2 − 4m(n−m− 1) + 8(n− 2)

2
,

and we complete the proof.

Theorem 3.4. The distance energy of Γ(R,P ) is

ED(Γ(R,P )) = 2n−m− 5 +
√
(2n−m− 5)2 − 4m(n−m− 1) + 8(n− 2).

Proof. According to the spectrum of Γ(R,P ) in the proofing part of Theorem 3.3, the distance
energy of Γ(R,P ) can be obtained as

ED(Γ(R,P )) =(n−m− 2)| − 2|+ (m− 1)| − 1|+∣∣∣∣∣2n−m− 5±
√
(2n−m− 5)2 − 4m(n−m− 1) + 8(n− 2)

2

∣∣∣∣∣
=2n−m− 5 +

√
(2n−m− 5)2 − 4m(n−m− 1) + 8(n− 2).
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3.2 Wiener-Hosoya energy

This section presents the energy of Γ(R,P ) associated with the Wiener-Hosoya matrix.

Theorem 3.5. The characteristic polynomial of WH(Γ(R,P )) is

PWH(Γ(R,P ))(λ) = λn−m−2(λ+ 1)m−1

(
λ2 − (m− 1)λ− m(n−m− 1)(n− 2)2

(m− 1)2

)
.

Proof. By the same argument of the proofing part of Theorem 3.2, we have the vertex set of Γ(R,P )
as {p1, p2, . . . , pm, r1, r2, . . . , rn−m−1}. By Definition 2.1, the vertex transmission in Theorem 3.1,
and dpq in Theorem 2.2, we obtain the Wiener-Hosoya matrix of Γ(R,P ) as given below:

WH(Γ(R,P )) =

p1 p2 . . . pm r1 r2 . . . rn−m−1



p1 0 1 . . . 1 n−2
m−1

n−2
m−1 . . . n−2

m−1

p2 1 0 . . . 1 n−2
m−1

n−2
m−1 . . . n−2

m−1
...

...
...

. . .
...

...
...

. . .
...

pm 1 1 . . . 0 n−2
m−1

n−2
m−1 . . . n−2

m−1

r1
n−2
m−1

n−2
m−1 . . . n−2

m−1 0 0 . . . 0

r2
n−2
m−1

n−2
m−1 . . . n−2

m−1 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

rn−m−1
n−2
m−1

n−2
m−1 . . . n−2

m−1 0 0 . . . 0

=

(
(J − I)m

n−2
m−1Jm×(n−m−1)

n−2
m−1J(n−m−1)×m 0n−m−1

)
.

The characteristic polynomial of WH(Γ(R,P )) is presented below:

PWH(Γ(R,P ))(λ) =

∣∣∣∣ (λ+ 1)Im − Jm − n−2
m−1Jm×(n−m−1)

− n−2
m−1J(n−m−1)×m λIn−m−1

∣∣∣∣ .
By Lemma 2.1 with a = 1, b = 0, c = d = n−2

m−1 , n1 = m, and n2 = n−m− 1, then we get

PWH(Γ(R,P ))(λ) = λn−m−2(λ+ 1)m−1

(
λ2 − (m− 1)λ− m(n−m− 1)(n− 2)2

(m− 1)2

)
.

Theorem 3.6. The spectral radius of Γ(R,P ) associated with the Wiener matrix is

ρWH(Γ(R,P )) =
m− 1 +

√
(m− 1)2 + 4m(n−m−1)(n−2)2

(m−1)2

2
.

Proof. Based on Theorem 3.5, the roots of PWH(Γ(R,P ))(λ) = 0 are eigenvalues of WH(Γ(R,P )).
Therefore, we obtain λ1 = −1 with multiplicity m − 1, λ2 = 0 of multiplicity n − m − 2, and

λ3,4 =
m−1±

√
(m−1)2+

4m(n−m−1)(n−2)2

(m−1)2

2 . According to this fact, we get the spectrum of Γ(R,P ) as
follows:

SpecWH(Γ(R,P )) =

[
λ3 0 −1 λ4

1 n−m− 2 m− 1 1

]
.

This leads to ρWH(Γ(R,P )) as the maximum absolute eigenvalue, and we complete the proof.
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In the following theorem, the Wiener-Hosoya energy of Γ(R,P ) is determined.

Theorem 3.7. The Wiener-Hosoya energy of Γ(R,P ) is

EWH(Γ(R,P )) = m− 1 +

√
(m− 1)2 +

4m(n−m− 1)(n− 2)2

(m− 1)2
.

Proof. According to Theorem 3.6, the spectrum of Γ(R,P ) has been provided. Then,

EWH(Γ(R,P )) =(n−m− 2)|0|+ (m− 1)| − 1|+

∣∣∣∣∣∣
m− 1±

√
(m− 1)2 + 4m(n−m−1)(n−2)2

(m−1)2

2

∣∣∣∣∣∣
=m− 1 +

√
(m− 1)2 +

4m(n−m− 1)(n− 2)2

(m− 1)2
.

3.3 Distance signless Laplacian energy

This part focuses on the DSL-matrix of Γ(R,P ). Firstly, we present the characteristic polyno-
mial of Γ(R,P ).

Theorem 3.8. The characteristic polynomial of DSL(Γ(R,P )) is

PDSL(Γ(R,P ))(λ) =(λ− 2n+m+ 5)n−m−2(λ− n+ 3)m−1(
λ2 + (2m− 5n+ 10)λ+ 4n2 − 19n− 2m2 + 3m+ 21

)
.

Proof. Based on Theorem 3.1, the transmission matrix of Γ(R,P ), T (Γ(R,P )), is

p1 p2 . . . pm r1 r2 . . . rn−m−1



p1 n− 2 0 . . . 0 0 0 . . . 0
p2 0 n− 2 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

pm 0 0 . . . n− 2 0 0 . . . 0
r1 0 0 . . . 0 2n−m− 3 0 . . . 0
r2 0 0 . . . 0 0 2n−m− 3 . . . 0
...

...
...

. . .
...

...
...

. . .
...

rn−m−1 0 0 . . . 0 0 0 . . . 2n−m− 3

. (2)
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By Definition 2.3, and matrices in Equations (1) and (2), we obtain

DSL(Γ(R,P ))

=

p1 p2 . . . pm r1 r2 . . . rn−m−1



p1 n− 2 1 . . . 1 1 1 . . . 1
p2 1 n− 2 . . . 1 1 1 . . . 1
...

...
...

. . .
...

...
...

. . .
...

pm 1 1 . . . n− 2 1 1 . . . 1
r1 1 1 . . . 1 2n−m− 3 2 . . . 2
r2 1 1 . . . 1 2 2n−m− 3 . . . 2
...

...
...

. . .
...

...
...

. . .
...

rn−m−1 1 1 . . . 1 2 2 . . . 2n−m− 3

.

The above matrix can be partitioned into block matrices as follows:

DSL(Γ(R,P )) =

(
(n− 3)Im + Jm Jm×(n−m−1)

J(n−m−1)×m (2n−m− 5)In−m−1 + 2Jn−m−1

)
.

The characteristic polynomial of DSL(Γ(R,P )) is presented below:

PDSL(Γ(R,P ))(λ) =

∣∣∣∣ (λ− (n− 3))Im − Jm − n−2
m−1Jm×(n−m−1)

− n−2
m−1J(n−m−1)×m (λ− (2n−m− 5))In−m−1 − 2Jn−m−1

∣∣∣∣ . (3)

We apply row and column operations to solve the above determinant. Let Ri be the i-th row and
R

′

i be the new i-th row obtained from row operation of PDSL(Γ(R,P ))(λ). The same notations for
column operation, we write as Ci and C

′

i . Then, by applying the following steps into Equation 3:

1. Rm+1+i −→ Rm+1+i −Rm+1, for i = 1, 2, . . . , n−m− 2.

2. R1+i −→ R1+i −R1, for i = 1, 2, . . . ,m− 1.

3. Cm+1 −→ Cm+1 + Cm+2 + . . .+ Cn−1.

4. C1 −→ C1 + C2 + . . .+ Cm.

5. Rm+1 −→ Rm+1 −R1.

6. C1 −→ C1 +
λ−n+3

λ−3n+2m+6Cm+1.

We obtain

PDSL(Γ(R,P ))(λ)

=

∣∣∣∣∣∣∣∣
a −J1×(m−1) m+ 1− n −Jn−m−2

0(m−1)×1 (λ− n+ 3)Im−1 0(m−1)×1 0m−1

0 01×(m−1) λ− 3n+ 2m+ 6 01×(n−m−2)

0(n−m−2)×1 0(n−m−2)×(m−1) 0(n−m−2)×1 (λ− 2n+m+ 5)In−m−2

∣∣∣∣∣∣∣∣ ,
where a = λ−n+3

λ−3n+2m+6 (m+ 1− n) + λ− n−m+ 3. Therefore, we have

PDSL(Γ(R,P ))(λ) =(λ− 2n+m+ 5)n−m−2(λ− n+ 3)m−1(
λ2 + (2m− 5n+ 10)λ+ 4n2 − 19n− 2m2 + 3m+ 21

)
.
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Theorem 3.8 implies the following two results.

Theorem 3.9. The spectral radius of Γ(R,P ) associated with the distance matrix is

ρD(Γ(R,P )) =
5n− 2m− 10 +

√
(2m− 5n+ 10)2 − 4(4n2 − 19n− 2m2 + 3m+ 21)

2
.

Proof. According to Theorem3.8, the roots ofPDSL(Γ(R,P ))(λ) = 0 are eigenvalues ofDSL(Γ(R,P )).
Therefore, we obtain λ1 = n−3with multiplicitym−1, λ2 = 2n−m−5 of multiplicity n−m−2,

and λ3,4 =
5n−2m−10±

√
(2m−5n+10)2−4(4n2−19n−2m2+3m+21)

2 . According to this fact, we get the
spectrum of Γ(R,P ) as follows:

SpecDSL(Γ(R,P )) =

[
λ3 2n−m− 5 n− 3 λ4

1 n−m− 2 m− 1 1

]
.

As a result, we obtain the maximum absolute eigenvalue to be the spectral radius of Γ(R,P ), and
the proof is completed.

Theorem 3.10. The distance signless Laplacian energy of Γ(R,P ) is

EDSL(Γ(R,P )) = 2n2 +m2 − 2mn− 5n+ 2m+ 3.

Proof. According to the spectrum of Γ(R,P ) in the proofing part of Theorem 3.9, DSL-energy of
Γ(R,P ) is given by

EDSL(Γ(R,P )) =(n−m− 2)|2n−m− 5|+ (m− 1)|n− 3|+∣∣∣∣∣5n− 2m− 10±
√
(2m− 5n+ 10)2 − 4(4n2 − 19n− 2m2 + 3m+ 21)

2

∣∣∣∣∣
=(n−m− 2)(2n−m− 5) + (m− 1)(n− 3) + 5n− 2m− 10

=2n2 +m2 − 2mn− 5n+ 2m+ 3.

4 Discussion

The distance energy formula has R2 value of 0.914, while R2 of the Wiener-Hosoya energy
is 0.828, and the distance signless Laplacian energy has R2 = 0.955. It is presented in Figures
1, 2, and 3. Overall, having R2 values close to 1 indicates that the formula is highly effective in
explaining the variation in the data. It suggests a strong fit between the model and the observed
data, indicating that the formula likely captures meaningful relationships between the variables.
However, as always, it’s important to consider other aspects of model evaluation and potential
limitations of the analysis.
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Figure 1: The Distance Energy of Γ(R,P ).

Figure 2: The Wiener-Hosoya Energy of Γ(R,P ).

Figure 3: The Distance Signless Laplacian Energy of Γ(R,P ).

Moreover, from all above, the energy and spectral radius results show the relationships be-
tween both values as presented below:

Corollary 4.1. In Γ(R,P ),

1. ED(Γ(R,P )) = 2 · ρD(Γ(R,P )).

2. EWH(Γ(R,P )) = 2 · ρWH(Γ(R,P )).

Corollary 4.2. In Γ(R,P ),

ED(Γ(R,P )) < EWH(Γ(R,P )) < EDSL(Γ(R,P )).

5 Conclusion

From the earlier discussion, we have presented the energy formulas prime ideal graph of a
commutative ring based on transmission-based matrices. The distance signless Laplacian energy
is the highest and the distance energy is the lowest. Additionally, the energy is twice the spectral
radius associated with distance and Wiener-Hosoya matrices.
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